Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method.
نویسندگان
چکیده
OBJECTIVES We attempted to determine the accuracy and pitfalls of calculating the mitral regurgitant orifice area with the proximal isovelocity surface area method in a clinical series that included patients with valvular prolapse and eccentric jets. BACKGROUND The effective regurgitant orifice area, a measure of lesion severity of mitral regurgitation, can be calculated by the proximal isovelocity surface area method, the accuracy and pitfalls of which have not been established. METHODS In 119 consecutive patients with isolated mitral regurgitation, effective regurgitant orifice area was measured by the proximal isovelocity surface area method and compared with measurements simultaneously obtained by quantitative Doppler and quantitative two-dimensional echocardiography. RESULTS The effective mitral regurgitant orifice area measured by the proximal isovelocity surface area method tended to be overestimated compared with that measured by quantitative Doppler and quantitative two-dimensional echocardiography (38 +/- 39 vs. 36 +/- 33 mm2 [p = 0.09] and 34 +/- 32 mm2 [p = 0.02], respectively). Overestimation was limited to patients with prolapse (61 +/- 43 vs. 56 +/- 35 mm2 [p = 0.05] and 54 +/- 34 mm2 [p = 0.014]) and was restricted to patients with nonoptimal flow convergence (n = 7; 137 +/- 35 vs. 84 +/- 34 mm2 [p = 0.002] and 79 +/- 33 mm2 [p = 0.002]). In patients with optimal flow convergence (n = 112), excellent correlations with both reference methods were obtained (r = 0.97, SEE 6 mm2 and r = 0.97, SEE 7 mm2, p < 0.0001). CONCLUSIONS In calculating the mitral effective regurgitant orifice area with the proximal isovelocity surface area method, the observed pitfall (overestimation due to nonoptimal flow convergence) is rare. Otherwise, the method is reliable and can be used clinically in large numbers of patients.
منابع مشابه
Proximal isovelocity surface area should be routinely measured in evaluating mitral regurgitation: a core review.
The proximal isovelocity surface area (PISA) measurement, also known as the "flow convergence" method, can be used in echocardiography to estimate the area of an orifice through which blood flows. It has many applications, but this review focuses only on its use in the intraoperative evaluation of mitral regurgitation. In that setting, PISA provides a quantitative assessment of the severity of ...
متن کاملQuantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation.
BACKGROUND The aim of this study was to test the accuracy of an automated 3-dimensional (3D) proximal isovelocity surface area (PISA) (in vitro and patients) and stroke volume technique (patients) to assess mitral regurgitation (MR) severity using real-time volume color flow Doppler transthoracic echocardiography. METHODS AND RESULTS Using an in vitro model of MR, the effective regurgitant or...
متن کاملAn alternative isovelocity surface model for quantitation of effective regurgitant orifice area in mitral regurgitation with an elongated orifice application to functional mitral regurgitation.
OBJECTIVES The purpose of this study was to develop and test a simple, clinically practical alternative isovelocity surface (ISVS) model for calculating effective regurgitant orifice area (EROA) in mitral regurgitation (MR) when the regurgitant orifice is elongated, such as in functional MR. BACKGROUND Clinical experience and 3-dimensional imaging suggest that the traditional hemispheric ISVS...
متن کاملDeterminants of regurgitant volume in mitral regurgitation: contrasting effect of similar effective regurgitant orifice area in functional and organic mitral regurgitation.
BACKGROUND Quantitative assessment of the severity of mitral regurgitation (MR) is based on the calculation of the effective regurgitant orifice (ERO), a measure of lesion severity, and of the regurgitant volume (RVol), a measure of left ventricular volume overload. We aimed at evaluating the determinants of RVol in both organic (OMR) and functional mitral regurgitation (FMR). METHODS AND RES...
متن کاملCurrent status of flow convergence for clinical applications: is it a leaning tower of "PISA"?
Spatial appreciation of flow velocities using Doppler color flow mapping has led to quantitative evaluation of the zone of flow convergence proximal to a regurgitant orifice. Based on the theory of conservation of mass, geometric analysis, assuming a series of hemispheric shells of increasing velocity as flow converges on the orifice--the so-called proximal isovelocity surface area (PISA) effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American College of Cardiology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 1995